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Abstract

Using the Weather Research and Forecasting (WRF) Model, we conducted simulations of a

major winter storm that produced up to 50 centimeters of snow in parts of Vermont (VT) on 20-21

January 2019. In WRF simulations, different microphysics parameterizations (MP) yield differ-

ent model outputs of sizes and fall velocities of atmospheric particles. We employed a sensitivity

test using the Morrison 2-moment (M2M), Thompson (THOM), WRF Double Moment 6-class

(WDM6), Milbrandt–Yau (MILL), and Goddard (GODD) MPs to analyze snowfall during the

Vermont storm, and we compared our results to real observations at a near sea level site in Mid-

dlebury, VT, and a mountain location in Rochester, VT. We analyzed snowfall mixing ratios and

accumulated snowfall totals predicted by WRF to find that the THOM and GODD MPs predicted

snowfall totals that fell most in line with observed snowfall from the storm, while M2M slightly

overpredicted snowfall, WDM6 slightly underpredicted accumulated snow, and the MILL simula-

tion grossly underpredicted snowfall but predicted a large accumulation of graupel, causing total

accumulated precipitation to be fairly accurate.
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I Introduction

Vermont (VT), located in the northeast of the United States, is a state susceptible to major winter

storms, as a result of its northerly latitude, the Green Mountain Range that bisects its center from north

to south, and Lake Champlain, which lies on the state’s eastern border with New York. These storms

have important implications for the state, bolstering its economy through winter recreation, while

causing damage to infrastructure and affecting people’s lives. In the present study, we considered

one of these storms that impacted the state in January 2019 by analyzing the physics of the clouds

throughout the duration of the storm.

I. (i) The Storm

During the period from 20 January to 21 January 2019, a major winter storm produced up to 50

centimeters of snow in parts of Vermont [1]. At Burlington International Airport (BTV) in South

Burlington, VT, where the state’s primary first order weather station is located, 47.2 cm of snow fell

from this storm, making it the 18th largest snowstorm on record at BTV and the 5th largest in January.

At the storm’s peak intensity during the morning on 20 January, the snowfall rate reached 6.1 cm per

hour. Temperatures were unusually cold for a snowstorm of this magnitude, falling below -20 °C for

much of the day on 20 January and through the morning on 21 January. Despite the arctic air that

was in place, snow-to-liquid ratios were relatively low at roughly 10:1 for the majority of the storm,

though they did increase as it progressed. Impacts of the storm were primarily travel related, as it

coincided Martin Luther King Jr. Day weekend, a popular weekend for New England skiers to travel

to Vermont. With nearly 50 cm of snow falling in a 24 hour period in spite of low snow-to-liquid

ratios, the microphysical conditions of the clouds were ripe for producing snow and contributed to the

heavy snowfall rates that occurred. Past research on cloud microphysics of Vermont winter storms is

scarce, and forecast skill for these storms varies frequently, providing motivation for this study.

I. (ii) Cloud Microphysics

Clouds contain water droplets and ice particles that are suspended in air, and cloud microphysics is

the study of the microscale processes occurring within these small particles that make up clouds [2].

The dynamics of cloud microphysics begins with a cloud condensation nucleus (CCN), a particle with

a diameter on the order of 1 µm, that provides an ideal surface for other water droplets to stick to. As

more water particles coalesce to the original CCN, a cloud particle forms, and more particles combine

until a rain drop or snowflake is formed, as shown in Fig. 1. For rain drops to fall, the saturation

ratio,

S =
e

eS
, (1)
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Fig. 1. The dynamics of cloud microphysics. A cloud condensation nucleus (CCN), a tiny water

particle with diameter D ∼ 0.1 - 10 µm, provides a surface to which other water particles can stick.

These other particles combine with the original CCN and cause it to grow, forming a cloud particle

and ultimately a rain drop with D ∼ 1,000 µm. When the atmosphere becomes saturated, these rain

drops fall, causing precipitation.

where e is the water vapor pressure and eS is the saturation vapor pressure, must equal 1. When S = 1,

the atmosphere becomes saturated and it cannot hold any additional moisture, causing particles to fall

as precipitation. Cloud microphysics has important implications on the weather that we experience

every day.

In numerical weather prediction (NWP), cloud microphysics is one of the many variables that we

must take into account when predicting precipitation, and there are numerous ways to parameterize

cloud microphysics. Microphysical modeling consists of different schemes that have either a bin

or bulk structure. Bin schemes, while computationally more expensive and complex, can be much

more effective because they divide cloud particles into thousands of bins and model what a particle

does based on each individual bin [3]. On the flip side, bulk microphysics schemes, which are used

more widely in operational weather models, use an empirical gamma or exponential distribution to

determine particle sizes based on a prognosticated total number concentration NT and/or mixing ratio

q in the atmosphere [3, 4]. Here NT is a measure of the number of particles of diameter D of a given

hydrometeor compared to all particles in the atmosphere, while q is the ratio of the mass of particles

of a given hydrometeor to the mass of the atmosphere.1 While a bin scheme individually determines

particle sizes for each bin, a bulk scheme uses a distribution to make this determination. A gamma

particle size distribution in a bulk scheme can take the form

N(D) = N0D
αe−λD, (2)

where N(D) is the total number concentration per unit volume of particles of diameter D, and N0,

1A hydrometeor is a type of particle in the atmosphere, such as hail, water vapor, rain, or snow.
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λ, and α are the intercept, slope, and shape parameters of the size distribution, respectively [5]. The

parameters N0 and λ can be determined by predicted values for NT and q in the bulk scheme, while

α depends on the hydrometeor examined. As an example of how the parameters in Eq. 2 could be

determined, the intercept parameter can be given by

N0 = NT
1

Γ(1 + α)
λ1+α, (3)

and the slope parameter could be given by

λ = [
Γ(1 + d+ α)

Γ(1 + α)

cNT

ρq
]1/d, (4)

where d and c are constants that depend on the hydrometeor and ρ is the density of air. Equations 3

and 4 are calculated for each hydrometeor category, and in most MPs, α is a fixed value, while q and

NT can vary. By making a prediction about q and NT and holding α constant, a microphysics scheme

could use equations like Eqs. 3 and 4 to determine N0 and λ, respectively, in order to determine the

particle size distribution given in Eq. 2.2

Each microphysics scheme has a moment, which is the number of prognostications it makes in

its particle size distribution. For example, a single-moment scheme might only predict q (leaving NT

and α fixed), while a double-moment scheme could predict NT and q, which are input into equations

that determine N0 and λ in Eq. 2. A rare three-moment scheme predicts NT , q, and α, rather than

leaving the shape parameter α fixed. Based on the determined particle size distribution in Eq. 2, the

bulk scheme will predict the particle size, underpinning cloud microphysics modeling in NWP.

The Advanced Research Weather Research and Forecasting Model (WRF) is a community at-

mospheric modeling system that allows users to model many physical, dynamical, and chemical pro-

cesses in the atmosphere through real or idealized simulations [6]. In WRF, users can choose be-

tween many microphysics parameterizations (MPs) that use either empirical gamma or exponential

distributions to determine particle size for different hydrometeors based on assumptions about mix-

ing ratios or number concentrations (see Eq. 2). In previous WRF simulations of real winter storms,

common MP choices include the Morrison 2-moment (M2M), Thompson (THOM), WRF Double Mo-

ment 6-class (WDM6), Milbrandt–Yau Double Moment (MILL), and Goddard (GODD) microphysics

schemes [4, 5, 7–11]. Table I summarizes the characteristics of these 5 MPs. Because they make dif-

ferent predictions about q and NT for each hydrometeor, when chosen as an MP in WRF, each of these

bulk schemes should yield different outputs when the model is run. In this paper, we seek to examine

the model outputs for these 5 microphysics schemes, using the January 2019 Vermont winter storm as

our case study.

2Note that we intentionally use vague language here, since each MP has its own equations and not all follow Eqs. 3

and 4 exactly when determining parameters for its particle size distribution.
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Table I. An overview of the Morrison 2-moment (M2M), Thompson (THOM), WRF Double Mo-

ment 6-class (WDM6), Milbrandt–Yau Double Moment (MILL), and Goddard (GODD) microphysics

schemes in the Weather Research and Forecasting Model. For each scheme, the moment, prognostic

mass variables q, and prognostic number variables NT are listed. The subscripts c,r,i,s,g,h, and n

correspond with cloud, rain, ice, snow, graupel, hail, and cloud condensation nuclei, respectively. The

units kg kg−1 and kg−1 are units of the default outputs in the WRF model.

Moment Mass variables q Number variables NT

(kg kg−1) (kg−1)

M2M 2 qc, qr, qi, qs, qg Nr, Ni, Ns, Ng

THOM hybrid qc, qr, qi, qs, qg Ni, Nr

WDM6 2 qc, qr, qi, qs, qg Nn, Nc, Nr

MILL 3 qc, qr, qi, qs, qg, qh Nc, Nr, Ni, Ns, Ng, Nh

GODD 1 qc, qr, qi, qg, qs, qh

II Methods

To analyze the cloud microphysics of the January 2019 Vermont winter storm we used the Advanced

Research Weather Research and Forecasting Model version 4.2.1. The model was configured with

10 km horizontal grid spacings for 38 levels in the atmosphere above mean sea level (MSL). Each

simulation was initialized using Global Forecast System (GFS) analysis data with a 0.5◦ grid increment

obtained from the National Centers for Environmental Information (NCEI) GFS database [12]. The

GFS analysis data set the initialized conditions for the land surface, atmosphere, and boundary at 3

hour intervals.

We configured WRF using the RRTMG longwave and shortwave parameterizations, the Noah-

MP Land Surface Model, and Yonsei University planetary boundary layer parameterization, which

remained constant for all of our experiments. For an overview of each of these parameterizations, see

the WRF users guide [6]. We varied MPs, using M2M, THOM, WDM6, MILL, and GODD, which are

described in greater detail in Table I. For each simulation, we ran WRF for 48 hours from 0000 UTC

20 January 2019 to 0000 UTC 22 January 2019. Although there were minimal snow accumulations on

21 January 2019, we focused data analysis entirely on 20 January 2019, when the brunt of the snow in

this storm fell. We analyzed the region shown in Fig. 2, which contains 17 longitudinal segments and

24 latitudinal segments, for a total of 408 gridpoints on the 2-dimensional plane. Each gridpoint also

contains data for 38 levels of the atmosphere extending to 20,000 meters above the surface of the earth.

We obtained NetCDF output files for each hour during which simulations were run. To compare each

simulation, we considered estimated radar reflectively data, mixing ratio data for all hydrometeors at
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Fig. 2. Terrain height for the domain for data analysis. For our study, we took averages of all gridpoints

contained in this domain. The domain contains 17 longitudinal segments and 24 laditudinal segments,

giving a total of 408 gridpoints on the 2-dimensional plane. We also examined data at Middlebury and

Rochester, the two labeled towns, and compared these results to real observations from the storm. The

dashed horizontal line is the line across which we analyzed snow mixing ratio vertical cross sections.

different levels of the atmosphere, and accumulated snowfall. Following National Weather Service

(NWS) observations reporting that snow-to-liquid ratios remained near 10:1 for the storm’s duration,

we assumed a 10:1 ratio for our analysis [1]. We used the mixing ratio data to draw assumptions

about accumulated snowfall and compared snowfall data to real storm observations from Community

Collaborative Rain, Hail & Snow (CoCoRaHS) Network sites in Middlebury, VT (MSL 113 m) and

Rochester, VT (MSL 527 m).
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III Results

III. (i) Accumulated Snowfall

Observed snowfall totals for the Vermont January 2019 snowstorm ranged from 25 to 50 cm, and as

shown in Fig. 3, total accumulated snowfall Sa for our simulations falls roughly in line with actual

snowfall totals. Because of the cold, arctic air that was in place for this storm, there was not much

Fig. 3. Total snowfall for each MP on 20 Jan 2019. Most snowfall accumulations fall in line with

storm observations, and the Milbrandt-Yao MP grossly underpredicts snowfall.

mountain enhancement of snowfall totals, which tends to happen during warmer Vermont snowstorms

when mountain temperatures are much colder than temperatures in the valleys. The warm waters in

the Connecticut River on the eastern VT border do appear to have some influence on snowfall totals

there, as all snowfall maps in Fig. 3 show much less accumulation near and east of the river than in the
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Green Mountains of central VT. A quick glance at these maps reveals that MILL predicted the least

amount of snow, while M2M forecasted the most, followed by THOM, WDM6, and GODD, which

each predicted roughly the same amount of snowfall. The darker segments of red in M2M, THOM,

and GODD simulations show where some heavier bands of snow may have set up during the morning

hours on 20 January 2019.

Figure 4 shows the development of the snowstorm for each simulation during the first 24 hours

using an average accumulated snowfall Sa for all gridpoints in our domain. As the accumulation maps

in Fig. 3 also confirm, MILL predicted the least amount of snow for the entire domain, while M2M

predicted the most. Snowfall gradually began to accumulate at 0000 UTC on 20 January 2019 before

Fig. 4. Total accumulated snowfall during 20 Jan 2019. The data points in this figure were obtained

by averaging accumulated snowfall for all grid points in our domain for data analysis. The fastest

accumulations occurred during the morning on 20 Jan 2019, before snow tapered off during the late

afternoon.

increasing to its greatest rates in the overnight hours and continuing throughout the day before tapering

off during the late afternoon. While the MILL simulation has fairly similar Sa to other MPs during the

early parts of the storm, accumulation begins to slow earlier than all other MPs, which could explain

why MILL predicted the least snow. On the contrary, M2M predicted snow to continue at a steady

rate before tapering off at around 1400 UTC, resulting in a larger total accumulation than any other

simulation.

Table II shows total snow accumulations Sa for Middlebury (MSL 113 m) and Rochester (MSL
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527 m), VT, as well as the mean of all gridpoints for our domain (Fig. 2). In Middlebury, all simulations

underpredicted Sa compared to the actual observation of the storm, though the actual observation

falls within the range of uncertainty for M2M, THOM, and GODD. Following general trends in the

simulations, MILL grossly underpredicted snowfall in Middlebury. Compared to Middlebury, Sa as

predicted by the MPs is ∼ 5 cm less in Rochester. While M2M only predicted 2.13 fewer cm of snow

in Rochester than in Middlebury, GODD and THOM predicted 5.53 cm and 6.22 cm less, respectively,

highlighting possible mountain biases in M2M. Forecast skill for THOM, WDM6, and MILL was very

high at Rochester, as these simulations predicted Sa within 0.46 cm of the actual observation of Sa =

30.5 cm. Following the trends for the specific locations of Middlebury and Rochester, the average of

Table II. Total accumulated snowfall for the snowstorm on 20 January 2021 for each MP, and actual

storm observations from CoCoRaHS sites. Data for Middlebury and Rochester contain the average of

the nearest 5 gridpoints to the CoCoRaHS sites, and data for the domain contain the average of all grid

points in the domain (Fig. 2).

Acumulated Snowfall (cm)

Middlebury Rochester Domain

M2M 38.02 ± 1.854 35.89 ± 1.867 29.04 ± 5.000

THOM 36.26 ± 3.111 30.04 ± 2.225 27.35 ± 4.450

WDM6 34.13 ± 2.837 30.75± 2.793 26.43 ± 4.592

MILL 23.79 ± 2.425 19.68 ± 1.015 20.98 ± 6.374

GODD 36.15 ± 4.652 30.62 ± 3.592 25.91 ± 4.626

Observation 38.1 30.5

all gridpoints in our domain show that M2M predicted the largest Sa, while MILL predicted the least

snowfall. With a standard deviation of σ = 6.374 cm, MILL had the largest variability in Sa, which

is apparent in Fig. 3, since predicted snowfall for MILL varies largely from the northwest part of the

domain to the southeast.

III. (ii) Snow Mixing Ratios

Each MP prognosticates snow mixing ratios qs for different levels of the atmosphere. Figure 5 shows

vertical profiles of snow mixing ratios at 0500, 1100, 1700, and 2300 UTC. Consistent with the accu-

mulation of snowfall over time shown in Fig. 4, qs peaked for all MPs at roughly 0600 UTC 20 January

2019 and gradually fell as the day and storm progressed. At 0500 UTC, all MPs had snow mixing ra-

tios peak in the lower atmosphere at heights between 2,500 and 4,000 m above Earth’s surface. MILL

had the greatest qs at this time at any level of the atmosphere, but its snow mixing ratio decreased in

the lower parts of the atmosphere more rapidly than any other MP. This finding is especially evident
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Fig. 5. Vertical profiles of snow mixing ratios for the data analysis domain at 0500, 1100, 1700, and

2300. For all MPs, snow mixing ratios qs peaked in the morning hours on 20 Jan 2019 before tapering

off by the afternoon.

at 1100 UTC in Fig. 5, where the brown line corresponding with MILL shows qs decreasing rapidly

at levels of the atmosphere below 3,000 m, while other MPs have qs remain roughly constant or even

increase in the lower atmosphere. At all times and heights in the atmosphere throughout the storm,

WDM6 prognosticated the lowest qs, except at instances in the lower levels of the atmosphere when

MILL predicted a smaller qs than WDM6.

Figure 6 shows snow mixing ratios qs at 0500 UTC 20 January 2019 along the latitude 44 °N

(see dashed line in Fig. 2) for all longitudes in our domain for data analysis. At 0500 UTC, when

the snowstorm neared its peak intensity, all MPs prognosticated a large mass of snow particles in the

eastern part of our domain at levels of the atmosphere < 5,000 m above Earth’s surface. Mean snow

mixing ratios predicted by WDM6 and GODD for this cross section at all levels of the atmosphere

were qs = 0.0142 g kg−1 and qs = 0.0254 g kg−1, respectively, whereas qs was much larger for M2M,

THOM, and MILL, at qs = 0.0449 g kg−1, qs = 0.0531 g kg−1, and qs = 0.0655 g kg−1, respectively.

Snow mixing ratios for WDM6 and GODD are noticeably less in the center of the cross section, where

Vermont’s mountains are located.

Figure 7 shows the same data as Fig. 6, except 6 hours later at 1100 UTC. At this time, bands
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Fig. 6. Vertical cross sections at latitude 44 °N for snow mixing ratio qs at 0500 UTC on 21 Jan 2019.

Fig. 7. As in Fig. 6, but at 1100 UTC.
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of snow developed in the eastern part of the domain and in the center. The eastern band is especially

apparent for all simulations, while the band that developed in the center of the state was better predicted

by M2M, MILL, and WDM6 for this cross section. The cross section shown in Fig. 7 demonstrates the

usual drop-off of qs in the lower atmosphere for MILL, as peak snow mixing ratios occur at a height

near 3500 m. No other MPs show this same trend; high snow mixing ratios can be found close to

the surface of the earth for all other simulations. The mean snow mixing ratios qs were higher at 1100

UTC for all simulations than at 0500 UTC, partially due to the bands of snow that formed, and partially

do to the increased concentration of snow particles in the lower atmosphere. Mean values were qs =

0.1087 g kg−1, qs = 0.1236 g kg−1, qs = 0.0749 g kg−1, qs = 0.1123 g kg−1, and qs = 0.1095 g kg−1

for M2M, THOM, WDM6, MILL, and GODD, respectively. WDM6 and GODD both predicted few

particles in the upper atmosphere above 6,000 m at both 0500 UTC and 1100 UTC, as evidenced by

the purple shade above 6,000 m in Figs. 6 and 7.

Overall, the MPs show fairly similar tendencies for snow mixing ratios, with the outlier being

MILL and its rapid snow mixing ratio dropoff in the lower atmosphere. WDM6 consistently predicted

the least mass of snow particles in the atmosphere, while MILL tended to predict the greatest snow

mixing ratios for the upper atmosphere, and GODD and THOM predicted the the largest mass of snow

particles in the lower atmosphere. The prognostication of snow mixing ratios by each MP has impor-

tant implications on snowfall accumulations and rates, impacting forecast skill in meteorology.

III. (iii) Graupel

The Milbrandt-Yao microphysics scheme predicted much less snowfall and lower snow mixing ratios

in the lower atmosphere than all other MPs. Out of all MPs examined in this study, MILL contains

the most mass variables to predict q and more number variables to predict NT than any other MP

(See Table I). We considered why MILL predicted a significantly lower accumulated snowfall Sa
than all other MPs, and its overprediction of graupel, a hydrometeor distinct from snow that can still

stick to the ground, appears to be the answer. Graupel forms when supercooled water droplets freeze

to snowflakes, falling to the earth as particles similar to hail or ice pellets, but with lower density.

Figure 8 shows graupel mixing ratios qg at 1100 UTC, and MILL prognosticated significantly more

graupel particles than any other MP at this time and all other times. When comparing Fig. 8 to the

1100 UTC plot in Fig. 5 we can conclude that MILL’s low prediction of snow particles is compensated

for by its high prediction of graupel particles in the lower atmosphere. The relatively high graupel

mixing ratios qg and low snow mixing ratios qs as predicted by MILL are especially apparent in Fig. 9,

which shows that the mass of snow particles in the lower atmosphere decreases as height decreases,

while the mass of graupel particles increases as height decreases. This phenomenon occurs at both

1100 UTC, when the storm was near its greatest strength, and it also occurs as the storm began to taper

off at 1400 UTC.
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Fig. 8. Vertical profile of graupel mixing ratio qg for the domain at points lower than 8,000 m at 1100

UTC 20 Jan 2019. MILL predicts the largest number of graupel particles in the lower atmosphere at

this time, a limiting factor in its prediction of snow particles in the lower atmosphere (see Fig. 5).

Fig. 9. Vertical profiles of graupel mixing ratio qg and snow mixing ratio qs for the domain at points

lower than 8,000 m at 1100 UTC Jan 20 2019 and 1400 UTC Jan 20 2019 for the Milbrandt-Yao MP.

Contrasting trends seen in other MPs, qs decreases in the lowest part of the atmosphere in the MILL

simulation, and qg increases as height decreases.

Total accumulated precipitation data also show that MILL underpredicted snowfall in the storm

due to its large prediction of graupel in the lower atmosphere. When we consider total accumulated

precipitation Pa by summing snowfall accumulation and graupel accumualtion as predicted by WRF,

MILL predicted Pa that is similar to all other MPs and the actual observations for the storm, as shown

in Table III. Accumulated precipitation due to snow and graupel in Middlebury for MILL was Pa =
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37.24 ± 1.580 cm, so the actual observation of Pa = 38.1 cm falls within the range of uncertainty.

And in Rochester, MILL actually overpredicted total accumulated precipitation. When we consider

only snowfall in Rochester, Sa = 19.68 ± 1.015 cm, but with both snow and graupel, MILL predicted

an additional 13.51 cm of precipitation, causing total accumulated precipitation to be Pa = 33.19 ±
2.337 cm, when the actual observation at Rochester was Pa = 30.5 cm. Averaged over our domain for

Table III. As in II, but we included accumulated grapuel as well to calculate accumulated precipitation

Pa. The column %Graupel indicates the percentage of Pa for the domain that falls as graupel. When

we include graupel, MILL predicts accumulated precipitation much closer to the actual observations

in Middlebury and Rochester, but a very large percentage of that precipitation falls as graupel.

Acumulated Precipitation (cm)

Middlebury Rochester Domain % Graupel

M2M 38.02 ± 1.854 37.21 ± 1.857 29.16 ± 5.966 0.383%

THOM 36.40 ± 3.047 34.85 ± 2.789 28.55 ± 4.008 4.22%

WDM6 36.99 ± 3.150 37.74 ± 3.141 28.96 ± 5.224 8.76%

MILL 37.24 ± 1.580 33.19 ± 2.337 28.23 ± 4.671 25.7%

GODD 36.45 ± 4.467 34.68 ± 3.532 27.13 ± 4.246 4.51%

Observation 38.1 30.5

data analysis, MILL predicted a mean accumulated snowfall of Sa = 20.98 ± 6.374 cm. But MILL

predicted that over 7 cm of graupel fell during the storm, producing a mean accumulated precipitation

of Pa = 28.23 ± 4.671 cm for the domain, meaning that 25.7% of accumulated precipitation can be

attributed to graupel. That percentage is a stark contrast to the percentages for all other MPs, which

range from 0.383% graupel in M2M to 8.76% graupel in WDM6. Also, MILL’s standard deviation

for our domain decreases by ∆σ = 1.703 cm when we consider graupel; this finding is largely due to

sigificantly increased total accumulated precipitation east of the Connecticut River in New Hampshire,

as shown in Fig. 10, which shows total accumumulated precipitation due to snow and graupel. In

Fig. 10, there is minimal change from Fig. 3 in all MPs except in MILL, which now looks similar

to other MPs except east of the Connecticut River, where MILL predicted more total accumulated

precipitation than all other microphysics schemes.

IV Discussion

In this study, we conducted a sensitivity test of WRF MPs on a January 2019 Vermont snowstorm.

We found that M2M predicted the most snowfall for our domain, Middlebury, VT, and Rochester, VT,

while MILL forecasted the least snowfall out of our simulations. When compared to actual observa-
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Fig. 10. As in Fig. 3, but we now include accumulation due to graupel.

tions from the storm, M2M best predicted accumulated snowfall in Middlebury, and THOM, WDM6,

and GODD all predicted Sa within 0.46 cm of the observed snowfall in Rochester.

Initially, it appeared that MILL grossly underpredicted snowfall compared to all other MPs in this

study. However, when we considered graupel in addition to snow, MILL predicted a total accumulated

precipitation that is similar to all other MPs and actual storm observations. Actual storm data are

recorded as “Total Accumulated Snowfall” or “Total Precipitation”, so it is difficult to quantify the

predictive power of MILL in this simulation. In other words, there are no storm data which recorded

accumulated precipitation by hydrometeor. As a result, we are left to speculate about MILL’s predictive

power and if it was correct to forecast that roughly 25% of accumulated precipitation was due to

graupel. Likely, that is not the case, and less than 10% of Pa in this storm was graupel, since all

other MPs predicted that less than 10% of Pa was due to graupel and temperatures were very cold
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near Earth’s surface. (Graupel tends to form when there is warm air near the surface of Earth and cold

air aloft). Ultimately, MILL’s presumable overprediction of graupel and underprediction of snow is

inconsequential in terms of making weather forecasts, because both accumulate similarly, and have

the similar effects on peoples’ lives.

IV. (i) The Physics of the Milbrandt-Yao Microphysics Scheme

Of the five MPs that we analyzed, the Milbrandt-Yao scheme yielded the most unique results, predict-

ing roughly 25% of the accumulated precipitation to fall as graupel. These anomalous results motivate

a further analysis of the physics behind MILL. As shown in Table I, MILL is the only three-moment

microphysics scheme that we examined in this study. In addition to prognosticating hydrometeor mix-

ing ratios q and total number concentration NT , the MILL MP formulates a predictive equation for

radar reflectivity Z, given by

Z =
G(α)

c2
(ρq)2

NT

, (5)

where ρ is the density of air, c is a hydrometeor-dependent constant, and α is the shape parameter

in the particle size distribution given in Eq. 2. MILL is unique from other MPs because rather than

keeping α fixed, it becomes a prognosed parameter in this scheme. The shape parameter α is input in

Eq. 5 through the equation

G(α) =
(6 + α)(5 + α)(4 + α)

(3 + α)(2 + α)(1 + α)
. (6)

With Eqs. 3- 5, there are three equations with three unknowns, which can be solved to determine α, λ,

and N0, which are input in the particle size distribution given in Eq. 2.

The principle difference between MILL and other MPs used in this study is the variation in the

shape parameter α in the gamma particle size distribution N(D)=N0D
αe−λD. If we assume that the

parameters N0 and λ remain roughly constant for each hydrometeor in different MPs, we can make

an assumption about αg and αs for MILL. While single-moment and two-moment MPs will chose a

fixed value for αg and αs, MILL varies these parameters. Presumably, αg as a whole becomes greater

in MILL than other MPs, which would cause a flattened, wider particle size distribution, meaning that

there are more large graupel particles that can fall. And for snow, αs on aggregate is likely less in MILL

than other MPs, which causes the snow particle size distribution to have fewer particles with a large

diameterD. The increased dispersion of the graupel particle size distribution caused by variation in the

parameter α likely contributed to MILL’s high prediction of graupel compared to all other MPs.

V Conclusion

Weather forecasting has progressed significantly since the initial development of NWP. As we con-

tinue to improve computational power and our knowledge of the atmosphere widens, bin microphysics
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schemes could become operational. At the moment, though, bulk MPs underpin cloud microphysics in

operational weather models, relying on a distribution to prognosticate total particle number concentra-

tions NT , mixing ratios q, and occasionally radar reflectivity Z for different hydrometeors. Each MP

has its own tendencies and equations that predict particle sizes and fall velocities for each hydrome-

teor.

We conducted simulations of a January 2019 Vermont winter storm that delivered up to 50 cm

of snow in parts of the state. Varying microphysics parameterizations in the Weather Research and

Forecasting Model, we analyzed snowfall outputs for the storm. We found that the THOM and GODD

simulations best predicted snowfall for this storm, while MILL was the big outlier, predicting much

less snow than the other simulations, and underpredicting snowfall when compared to real observations

at Middlebury, VT and Rochester, VT. However, considering graupel led all simulations to have fairly

accurate predictions of total accumulated precipitation.

While we can conclude that the THOM and GODD simulations predicted snowfall totals that

were closest to observed values at Middlebury and Rochester and that MILL was quite accurate when

graupel was included, two towns is a very limited sample size for data verification, and our ability to

make concrete conclusions about the “best” MP for this storm is significantly limited by our consid-

eration of only two locations. By using more storm observations to compare each simulation to, we

could make a more convincing argument about which MP choice is best for forecasting this storm and

other Vermont storms. Additionally, our research used a National Center for Atmospheric Research

(NCAR) Command Language (NCL) function to determine apparent radar reflectivities as determined

by WRF. While we chose not to include these data in this report because they are highly dependent on

the hydrometeor mixing ratios that we have already analyzed, comparing simulated radar reflectivities

to actual radar data from the weather radar at Burlington International Airport (BTV) would be another

way to determine which MP has the highest predictive power for this storm. It would be difficult to

make a determination about which MP is “best” for winter storms in VT by only conducting a sensitiv-

ity analysis on one winter storm, as we have done. Future research could analyze multiple VT winter

storms with different atmospheric conditions to see if similar trends arise.
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