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Abstract

Beginning with the Navier-Stokes equations in an inertial reference frame, we derive
the Navier-Stokes equations in a rotating reference frame. We make simplifications to
these equations for geophysical fluid dynamics purposes by considering the centrifugal
acceleration, Coriolis acceleration, and the acceleration due to changes Earth’s rotation
rate. Applying our rotating frame equations to a simple atmospheric or oceanic model,
the shallow water model, we derive the shallow water equations. Lastly, to verify our
interpretations of the shallow water equations, we use Python to conduct numerical
simulations of the shallow water model and qualitatively analyze the simulated velocity
vector field under varying Coriolis parameters. The velocity vector fields from our
simulations confirm our hypothesis about how the field would appear differently under
different Coriolis parameters.
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Introduction

Fluid dynamics is a wide-ranging discipline that has significance in several fields including
aeronautics, environmental engineering, geosciences, and biology, among others. When
students first encounter fluid dynamics in their studies, they learn the governing equations
of fluid flow in an inertial reference frame. When an observer looks at a phenomenon within
one frame of reference and the phenomenon is occurring in that same reference frame, these
elementary governing equations hold. However, what happens when the observer and the
scenario are not in the same reference frame? That is, what if the scenario occurs on a
rotating object, while the observer believes that she is in a fixed location and that nothing
is rotating? This is what happens on Earth, a planet that rotates 2π radians each day.
In this rotating scenario, the governing equations that I alluded to will still hold in most
cases. However, for large problems that span thousands of kilometers or multiple days on
Earth — like atmospheric or oceanic flow — the governing equations are no longer valid,
and we must look at the equations in a rotating reference frame. The governing equations
in this rotating form will be the focus of this paper, and they provide the basis for analyzing
large-scale geophysical fluid flow problems on Earth.

Three physical principles underpin the governing equations in fluid dynamics: conser-
vation of mass, conservation of momentum, and conservation of energy. By modeling fluid
flow in various ways, we can arrive at these governing equations, known as the continuity,
momentum, and thermodynamic equations, respectively. As a whole, these equations are
the Navier-Stokes equations (NSEs). In their most complete form, the NSEs are rather
complex partial differential equations with several terms that describe the internal and ex-
ternal forces that a fluid experiences. However, depending on the properties of the flow, we
can make simplifications to these equations. Any analysis of fluid flow problems begins with
the governing equations, including the study of fluid dynamics over large scales on Earth.
Geophysical fluid dynamics (GFD), the sub-discipline of fluid dynamics that studies these
large scale flows, has important implications for weather, climate, and ocean circulation. A
basic GFD scenario looks at a “flat” fluid, where the horizontal extent is much larger than
the vertical. This problem, known as the shallow water model, can serve as the basis for a
more complex understanding of atmospheric-oceanic processes.

In the first section of this paper, we will consider the distinction between rotating and
nonrotating reference frames, and we will derive the momentum governing equations in a
rotating frame. The focus will be on the momentum equations, since the continuity (mass)
and thermodynamic (energy) governing equations have scalar time and spatial dependence,
and scalar-dependent equations do not change when we consider the physical principles in
a rotating frame. As a result, the continuity and thermodynamic equations are reference
frame invariant. Next, we will use the rotating frame equations to examine a simple model
of a large-scale fluid, developing the equations for the shallow water model. Lastly, we will
use Python to conduct numerical simulations of the shallow water model to examine how
the theoretical insights from the derivations relate to what we see numerically.
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1 The Navier-Stokes Equations in a Rotating Frame

The derivation presented in this section draws inspiration from similar derivations in geo-
physical fluid dynamics texts written by Joseph Pedlosky [1], Geoffry K. Vallis [2], and
John Marshall and R. Alan Plumb [3]. Pedlosky’s text, Geophysical Fluid Dynamics, is
the most mathematically rigorous, thoroughly explaining each step, and while Vallis’ At-
mospheric and Oceanic Fluid Dynamics also presents a rigorous discussion, the book leaves
many details up to the reader. In this section, we will present a complete derivation of the
equations, sparing no detail. For a linear algebra focused approach to the derivation, refer
to James F. Price’s A Coriolis Tutorial [4].

1.1 The Equations in an Inertial Frame

To begin our discussion of the Navier-Stokes equations in a rotating frame of reference,
we must first present these equations in an inertial frame. Throughout this paper, we will
assume all flows are inviscid, meaning that we can neglect viscosity, mass diffusion, and
thermal conductivity. This is convenient in the study of GFD, as we can often treat the
atmosphere and oceans as inviscid fluids. Additionally, we will only consider incompressible
fluids, since the atmosphere and oceans have nearly constant density. The nonconservation
form of the momentum equations for inviscid, incompressible flow, which fluid dynamics
texts such as [5] or [6] derive completely, are
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Note that we explicitly state the gravitational body force per unit mass, represented by g′,
which is the force due to gravitation in Eq. (1c), since it acts in the z-direction and is useful
for GFD applications. For now, we will use the notation g′, rather than g, and the reason
for this will become clear as we progress through our derivation. Writing these equations
in vector notation, we have

DV

Dt
+

1

ρ
∇p+ g′ẑ = F, (2)

where we made use of the material derivative, D
Dt , where

D

Dt
≡ ∂

∂t
+ V · ∇. (3)

We now have the inviscid, incompressible momentum equations in an inertial reference
frame, and we are ready to derive these equations in a rotating frame.

Lastly, before beginning our derivations, we will present the incompressible continuity
equation (which [5] derives) in nonconservation form, given by

∇ ·V = 0. (4)

5



The physical principal behind Eq. (4) is conservation of mass. Because mass is a scalar
quantity, it is reference frame invariant, and Eq. (4) does not change in a rotating reference
frame. For this reason, we will only derive the momentum equation in a rotating frame.

1.2 A Vector Rotating in an Inertial Frame

First, we consider a vector A that rotates counterclockwise about an axis of rotation in an
inertial reference frame with angular velocity Ω, as shown in Fig. 1.∗ The angular velocity
is the rotation rate of the rotating vector, and it has units of [s−1] or radians per second.
It is the angle ∆θ through which the vector rotates in a given amount of time ∆t, so that
|Ω| = ∆θ

∆t . As shown in Fig. 1, the angle between A and the vertical vector about which
A rotates is α, which is a fixed quantity since the distance ` between the dashed ellipses is
constant. We shall note that we are investigating a fixed and inertial reference frame, and
the vector A rotates within our reference frame.

`

Ω

A(t)

A(t+ ∆t)

∆A

α

∆θ

z

y

x |A|

|A| sin(α)

α

Figure 1: Side view of a rotating vector A and a cross section of the figure at a given
moment in time. The vector rotates counterclockwise with angular velocity Ω, and the
angle between A and the axis of rotation is always α. Note that the distance between the
two dashed ellipses is a fixed distance `.

From Fig. 1, we can see that for a small ∆θ = |Ω|∆t (implying a small ∆t and a small
change in A),

∆A = n|A| sin(α)∆θ, (5)

where n is the unit vector in the direction of ∆A. As the cross section in Fig. 1 shows,
|A| sin(α) gives the distance from the axis of rotation to the tip of the vectors A and
A(t + ∆t) such that if we assume ∆θ is small and multiply it by |A| sin(α), we get |∆A|.

∗Although this section is not crucial to our derivation of the NSEs in a rotating reference frame, it
provides the background that will help us understand how the scenario changes when we consider a rotating
reference frame.
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Because the tip of A rotates along one fixed height, ∆A is orthogonal to Ω, such that

n =
Ω×A

|Ω×A|
. (6)

If we divide Eq. (5) by ∆t and let ∆t −→ 0, ∆A
∆t becomes instantaneous, given by

dA

dt
= |A| sin(α)

dθ

dt

Ω×A

|Ω×A|
, (7)

where we only take the time derivative of θ since it is the only parameter on the right side
that is changing with time. We can now recognize that |Ω×A| = |Ω||A| sin(α), which we
substitute into Eq. (7) to arrive at

dA

dt
= Ω×A, (8)

where we have made use of the fact that dθ
dt = |Ω|. Equation (8) implies that for an

observer situated in a reference frame rotating with angular velocity Ω, the change in A
over an infinitesimal time is

dA

dt
= 0, (9)

since Ω = 0 for that observer. Equation (9) tells us that A is constant for an observer in
the rotating reference frame. However, an observer situated inside the inertial frame that
we considered in our derivation of Eq. (8) will see the change in A over an infinitesimal
amount of time as the cross product of Ω and A.

1.3 A Rotating Frame

In § 1.2, we examined a vector that rotates in an inertial reference frame. Now, we consider
a rotating reference frame, in which the vector appears to be fixed in space for an observer
situated in that frame. This consideration will serve as the beginning of our derivation of
the NSEs in a rotating reference frame, which will ultimately enable us to understand and
model large scale flows on Earth. Figure 2 displays a vector A that rotates counterclockwise
about an axis of rotation with angular velocity Ω. Similarly, vectors x̂, ŷ, and ẑ with the
subscripts rot denote the unit vectors along the x, y, and z axes, respectively, that also
rotate counterclockwise about the axis of rotation with angular velocity Ω. The vectors
with the subscript in are the unit vectors in the inertial reference frame. For an observer in
the inertial frame, these unit vectors are fixed, but for an observer in the rotating reference
frame, they appear to rotate clockwise with angular velocity Ω.

We define
A = Axx̂rot +Ayŷrot +Azẑrot, (10)

where Ax, Ay, and Az are the components of A in the x, y, and z directions of the rotating
frame, respectively. Because A appears fixed in the rotating reference frame, the velocity
of A may be given by its time rate of change(

dA

dt

)
rot

=
dAx
dt

x̂rot +
dAy
dt

ŷrot +
dAz
dt

ẑrot. (11)
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ẑrotẑin

Ω

x̂in

x̂rot

ŷin

ŷrot

A

Figure 2: A reference frame rotating counterclockwise with angular velocity Ω. The vector
A rotates counterclockwise about the z-axis with angular velocity Ω, meaning that it is
fixed in the rotating frame of reference. The subscripts rot denote rotation, while in refers
to a vector in an inertial reference frame.

For an observer fixed in the inertial frame, x̂rot, ŷrot, and ẑrot rotate at an angular
velocity Ω, and because Ω is perpendicular to the inertial frame,(

dx̂rot
dt

)
in

= Ω× x̂rot, (12a)(
dŷrot
dt

)
in

= Ω× ŷrot, (12b)(
dẑrot
dt

)
in

= Ω× ẑrot. (12c)

Now if we take the time derivative of Eq. (10) for an observer in the inertial frame, we have(
dA
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)
in
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)
in
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)
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+
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)
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+
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)
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, (13)

and when we apply the product rule to the terms on the right side of Eq. (13), we obtain:(
d(Axx̂rot)

dt

)
in

=
dAx
dt

x̂rot +Ax

(
dx̂rot
dt

)
in

, (14a)(
d(Ayŷrot)

dt

)
in

=
dAy
dt

ŷrot +Ay

(
dŷrot
dt

)
in

, (14b)(
d(Azẑrot)

dt

)
in

=
dAz
dt

ẑrot +Az

(
dẑrot
dt

)
in

. (14c)
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Substituting Eqs. (14a)–(14c) into Eq. (13) and rearranging terms, we obtain(
dA

dt

)
in

=
dAx
dt

x̂rot +
dAy
dt

ŷrot +
dAz
dt

ẑrot+

Ax

(
dx̂rot
dt

)
in

+Ay

(
dŷrot
dt

)
in

+Az

(
dẑrot
dt

)
in

. (15)

Now substituting our results from Eq. (11) and Eqs. (12a)–(12c) into Eq. 15, we obtain(
dA

dt

)
in

=

(
dA

dt

)
rot

+Ax(Ω× x̂rot) +Ay(Ω× ŷrot) +Az(Ω× ẑrot). (16)

Because the cross product has a distributive property and Ax, Ay, and Az are all scalars,
we can rewrite Eq. (16) as(

dA

dt

)
in

=

(
dA

dt

)
rot

+ (Ω×Axx̂rot) + (Ω×Ayŷrot) + (Ω×Azẑrot). (17)

Applying our definition of the vector A (Eq. (10)) to Eq. (17) we can write the equation
in vector form, as (

dA

dt

)
in

=

(
dA

dt

)
rot

+ Ω×A. (18)

Equation (18) is crucial in our derivation of the Navier-Stokes equations in a rotating
reference frame because it allows us to transform a time derivative of a vector in an inertial
frame to one in a rotating frame. To do so, we add a Ω ×A to the time derivative of the
vector in the rotating frame, as shown in Eq. (18).

Now we consider a velocity vector V, and we define V to be the time rate of change of
a given position vector r, so that we may rewrite Eq. (18) as

Vin = Vrot + Ω× r, (19)

letting r equal A and V equal the time rate of change of A. If we take the inertial time
derivative of Eq. (19) by applying our result from Eq. (18) to Eq. (19) and letting Vin = A,
we obtain(

dVin

dt

)
in

=

[(
d

dt

)
rot

+ Ω×
]

(Vrot + Ω× r)

=

(
dVrot

dt

)
rot

+

(
d(Ω× r)

dt

)
rot

+ Ω×Vrot + Ω×Ω× r

=

(
dVrot

dt

)
rot

+ (2Ω×Vrot) + (Ω×Ω× r) + r×
(
dΩ

dt

)
rot

. (20)

To explicitly show how we obtained Eq. (20), we will show the cross-product(
d(Ω× r)

dt

)
rot

= Ω×
(
dr

dt

)
rot

+ r×
(
dΩ

dt

)
rot

= Ω×Vrot + r×
(
dΩ

dt

)
rot

. (21)
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Note that the second Ω×Vrot term on the right side of Eq. (20) comes from the fact that(
dr
dt

)
rot

= Vrot by definition and Ω ×
(
dr
dt

)
rot

= Ω ×Vrot appears in the cross product in
Eq. (21).

Remark 1.1. We already explained that the choice of coordinate frame does not affect
the continuity equation (Eq. (4)) because we take partial derivatives of a scalar in that
equation. To solidify this point, consider an arbitrary scalar B. Because a scalar is a
reference frame invariant quantity, we can say(

DB

Dt

)
rot

=

(
DB

Dt

)
in

. (22)

Equation (22) provides the intuition for why the continuity equation — which involves
partial derivatives of mass (a scalar quantity) — does not change in a rotating reference
frame.

1.4 The Equations in a Rotating Frame

Section 1.2 set the stage for us to consider the implications of a rotating vector. In § 1.3,
we derived the transformation of an inertial frame time derivative of velocity to a rotating
frame time velocity derivative, given by(

dVin

dt

)
in

=

(
dVrot

dt

)
rot

+ (2Ω×Vrot) + (Ω×Ω× r) + r×
(
dΩ

dt

)
rot

. (20)

The vector form of the Navier-Stokes momentum equation is

DV

Dt
+

1

ρ
∇p+ g′ẑ = F. (2)

Substituting our our result from Eq. (20) into Eq. (2), our result is the momentum equation
in a rotating reference frame:

DVrot

Dt
+

1

ρ
∇p+ g′ẑ + (2Ω×Vrot) + (Ω×Ω× r) + r×

(
dΩ

dt

)
rot

= F. (23)

In Eq. (23), note that we changed our notation to apply the material derivative to Vrot,
since a fluid flow can change with time and space, and this notation follows our notation
in Eq. (2). Rearranging Eq. (23) slightly and dropping the subscript rot since we will now
only consider a rotating reference frame, we arrive at

DV

Dt
+

1

ρ
∇p+ g′ẑ = −(2Ω×V)− (Ω×Ω× r)−

(
dΩ

dt
× r

)
+ F, (24)

which is the momentum equation in a rotating reference frame.
We should now analyze the momentum equations in our two reference frames more

carefully. In the two equations shown in Table 1, we notice three terms added to the
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Reference Frame Momentum Equation

Inertial DV
Dt + 1

ρ∇p+ g′ẑ = F

Rotating DV
Dt + 1

ρ∇p+ g′ẑ = −(2Ω×V)− (Ω×Ω× r)−
(
dΩ
dt × r

)
+ F

Table 1: The momentum equation in an inertial and rotating reference frame.

rotating frame equation that are not present in the inertial frame equation: the centrifugal
acceleration, −Ω×Ω× r, the Coriolis acceleration, −2Ω×V, and the acceleration due to
changes in the rotation rate Ω, given by −dΩ

dt ×r. Table 2 highlights these three new terms.

For oceanic and atmospheric phenomena, Ω may be treated as a constant so that dΩ
dt = 0,

allowing us to neglect the acceleration due to changes in the rotation rate. We shall now
examine the other two terms in more depth, beginning with the centrifugal acceleration.

1.4.1 Centrifugal Acceleration

When we consider the momentum equations in a rotating frame, one of the “apparent”
forces that arises is the centrifugal force, given by −Ω × Ω × r. By carefully examining
this acceleration and it’s properties, we will able to simplify Eq. (24). The centrifugal
acceleration points outward from the axis of rotation, and since Ω is constant it depends
solely on how far the fluid is from the center of the Earth. Figure 3 displays the centrifugal
acceleration, and this figure will help us analyze its implications. If we let r be a position
vector that rotates counterclockwise about an axis of rotation with angular velocity Ω, then
r⊥ is the vector perpendicular to Ω and from the axis of rotation to the tip of r, as shown
in Fig. 3. Because Ω is orthogonal to r⊥, Ω× r⊥ = Ω× r.

Name Term

Centrifugal acceleration −Ω×Ω× r

Coriolis acceleration −2Ω×V

Acceleration due to changes in Ω −dΩ
dt × r

Table 2: New terms that appear when we consider the momentum equation in a rotating
reference frame.
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z
Ω

x

y

r

r⊥ −Ω×Ω× r

Figure 3: The centrifugal acceleration −Ω×Ω× r, indicated by the red vector. The vector
r is a position vector in a rotating reference frame with angular velocity Ω, and r⊥ is the
distance vector to r, perpendicular to the axis of rotation.

Remark 1.2. An important identity in our analysis is the triple product. If we have two
vectors A and B, we can derive an identity for A×A×B. It is given by

A×A×B = (A ·B)A− (A ·A)B. (25)

We can find a proof of Eq. (25) in any vector calculus textbook, including Susan Jane
Colley’s Vector Calculus ([7]).

Now we can apply the identity given by Eq. (25) to Ω× (Ω× r⊥) to find

Ω× (Ω× r⊥) = (Ω · r⊥)Ω− (Ω ·Ω)r⊥. (26)

It is clear that Ω · r⊥ = 0, leaving the centrifugal acceleration as

−Ω×Ω× r = |Ω|2r⊥, (27)

where we have replaced Ω× r⊥ with Ω× r since they are equal, and we multiplied Eq. (26)
by −1. The right side of Eq. (27) is just a vector that points entirely in the y-direction in
our Fig. 3, and any vector may be written as the gradient of a scalar potential, so we can
say

−Ω×Ω× r = ∇
(
|Ω|2r2

⊥
2

)
= ∇φc, (28)

where |Ω|
2|r⊥|2
2 = φc. In the middle term of Eq. (28) |Ω| is simply a constant that we

obtained from Eq. (26), and r⊥ is entirely in the y−direction, so when we take the gradient

∇
(
|Ω|2|r⊥|2

2

)
, we obtain (0, |Ω|2r⊥, 0), which is the centrifugal acceleration, as we can see

on the right side of Eq. 27.
Referencing Eq. (24), we can also express the gravity term g′ẑ as a potential, using

g′ẑ = ∇(g′z) = ∇φg′ . (29)
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Defining φg′ enables us to join potentials in Eq. (24), so that we obtain a potential involving
the “measured gravitational potential” g on earth in a rotating frame, where

g = φg′ − φc = g′z − |Ω|
2|r⊥|2

2
, (30)

where the minus sign in front of φc reflects the fact that we moved the centrifugal equation
to the left side of the momentum equation. Note that gravity g′ points directly towards the
center of the Earth, while the centrifugal acceleration points away from Earth’s rotation axis
and perpendicular to it, as shown in Fig. 3. The potential φg′ reflects Earth’s gravitational
pull, while φc reflects the apparent centrifugal acceleration that appears when we consider
the momentum equation in a rotating reference frame.

At last, we can simplify the momentum equation to account only for forces that will
“pull” an object to earth when using a rotating reference frame, so that

DV

Dt
+

1

ρ
∇p+∇g = −2Ω×V + F, (31)

where we have also eliminated the acceleration due to changes in the rotation rate term
that we saw in Eq. (24).

1.4.2 Coriolis Acceleration

The Coriolis acceleration — named after French mathematician Gustave Gaspard Coriolis
— given by −2Ω×V, is the last part of the momentum equation (Eq. (31)) in a rotating
frame that we must consider. This acceleration underpins the Coriolis Effect on Earth,
which describes the tendency of a moving body to divert its trajectory to the right in the
northern hemisphere and to the left in the southern hemisphere. We may treat the Coriolis
acceleration as a force per unit mass, which means that this “force” is perpendicular to the
velocity V. Thus, the Coriolis force does no work on a moving particle.

Looking more specifically at the anatomy of the Coriolis acceleration, we can see that
it involves the negative cross product between the rotation rate Ω and the velocity of a
moving particle V. This means that the Coriolis acceleration will work to “push” a moving
particle towards the right (assuming Ω is positive), as shown in Fig. 4. If a particle
travels with a straight velocity V, it will turn slightly to the right due to the Coriolis force.
This phenomenon has important implications for large-scale atmospheric flow and oceanic
circulation on Earth. For instance, if a storm were traveling directly east in the northern
hemisphere, it would divert slightly to the south due to the Coriolis force. On the contrary,
in the southern hemisphere, Earth’s rotation is clockwise, and the rotation rate vector Ω
points down, causing the Coriolis force to divert moving objects to the left.

We have one additional observation to make about the Coriolis acceleration. Consider a
particle located on the surface of the Earth at a latitude ϕ. We can place the particle at the
origin of its own Cartesian coordinate system, denoted by x′, y′, and z′, as shown in Fig.
5. By convention, x′ points eastward, y′ points to the north, and z′ points radially outward
from the center of the Earth. Applying trigonometry to the cross-section in Fig. 5, we can
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Ω
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Trajectory

Figure 4: The Coriolis acceleration, which diverts a moving particle with velocity V to the
right. The trajectory that a moving particle would take subject to the Coriolis acceleration
is labeled. Note that the rotation is counterclockwise, implying that the system would be in
the northern hemisphere on Earth. If the rotation were clockwise, the Coriolis acceleration
would divert the particle to the left.

y′
x′

z′

Ω

ϕ ϕ

Ω

Ωz′
Ωy′ ϕ

90− ϕ

Figure 5: Configuration of a particle located at the origin of a Cartesian coordinate system
given by x′, y′, and z′ rotating about an axis of rotation with angular velocity Ω and a
cross-section of that configuration.

see that Ωy′ = Ω cos(ϕ) and Ωz′ = Ω cos(90 − ϕ) = Ω sin(ϕ), where Ω is the magnitude
of Ω and Ωy′ and Ωz′ are the y′ and z′ components of Ω, respectively. Note that Ωx′ is
zero, since Ω points entirely in the vertical direction at the origin of the primed coordinate
system (and everywhere). In component form, we can then say Ω = (0,Ω cosϕ,Ω sinϕ).
Once again, the Coriolis acceleration is −2Ω×V. If we compute the Coriolis acceleration
component wise by taking the cross-product of Ω and V, we find

−2Ω×V = −2(Ω cos(ϕ)w − Ω sin(ϕ)v,Ω sin(ϕ)u,−Ω cos(ϕ)u). (32)

For the purposes of GFD, the flow in the radial direction (z′, given by w) is much smaller
than in either horizontal direction (north or east in Fig. 5). As a result, we can manipulate
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Eq. (32) by eliminating the term that has w in it. Moreover, since the radial component of
the Coriolis acceleration (z′) is much smaller than the acceleration due to gravity, we can
eliminate this term as well, leaving us with

−2Ω×V = −2(−Ω sin(ϕ)v,Ω sin(ϕ)u, 0). (33)

We will rewrite Eq. (33) as
−2Ω×V = −f ×V, (34)

where f ≡ f ẑ, and f is the Coriolis parameter given by

f ≡ 2Ω sin(ϕ). (35)

We can now take a deeper look at the Coriolis parameter f . A few things should stand out,
which are highlighted in Fig. 6:

1. The Coriolis parameter is positive for ϕ > 0◦, negative for ϕ < 0◦, and it is zero for
ϕ = 0◦. In other words, the Coriolis parameter is positive in the northern hemisphere,
negative in the southern hemisphere, and zero at the equator.

2. The magnitude of the Coriolis parameter is largest at the poles, and it is smallest at
the equator. This implies that the Coriolis acceleration is negligible at latitudes near
the equator, but it is most pronounced near the poles.

Our defining of the Coriolis parameter allows us to rewrite the momentum equation in a
rotating frame for geophysical purposes. It is:

DV

Dt
+

1

ρ
∇p+∇g + f ẑ×V = F. (36)

Figure 6: The Coriolis parameter as a function of latitude ϕ. The plot shows ϕ on the
y-axis and 2Ω sin (ϕ) on the y-axis for Ω = 2π radians per day.
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1.5 Discussion

We will now present the momentum and continuity governing equations of fluid dynamics
in a rotating reference frame in the form that is most suitable for geophysical applications
for incompressible flows:

DV

Dt
+

1

ρ
∇p+∇g + f ẑ×V = F

∇ ·V = 0

(36)

(4)

While the continuity equation did not change, the momentum equation differs from its
inertial form in two key ways:

1. The potential term contains g, the apparent gravity on Earth that encompasses
Earth’s gravitation and the centrifugal acceleration.

2. There is the addition of a Coriolis term, which describes the perpendicular “force”
that a moving body feels in a rotating system, like Earth.

Equation (36) underpins the study of geophysical fluid dynamics, and it can be applied to
simple flow problems to better understand our Earth. In the next section, we will do just
that.
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2 The Shallow Water Model

We will now apply our work from § 1 to the simplest model in geophysical fluid dynamics,
the shallow water model. This model allows us to simplify real-world phenomena in the
atmosphere and oceans, which we treat as thin fluids. Real-world modeling of atmospheric
flow or global ocean circulation is much more complex than the shallow water model that
we will examine, but this model provides the basis for models that are in operational use
today.

In this section, we rely most heavily on James C. McWilliams’ Fundamentals of Geophys-
ical Fluid Dynamics [8], which gives a thorough and mathematically rigorous explanation
of the shallow water model. Less detailed but still helpful references are James F. Price’s
A Coriolis Tutorial [1] and Atmospheric and Oceanic Fluid Dynamics, by Geoffry K. Vallis
[2]. Lastly, John Marshall and R. Alan Plumb’s book, Atmosphere, Ocean, and Climate
Dynamics, [3] provides a cursory view on the topic, but does not give too much insight.
Here, we will derive the continuity equation for the shallow water model from the continuity
equation that we already have (Eq. 4). For a derivation of the continuity equation entirely
from the physical principles, refer to [2] or [4].

2.1 The Model

In the shallow water model, we assume a constant fluid density and a vertical extent that
is much smaller than the horizontal extent (i.e. H/W � 1, where H is the height of a
column in the model and W is the width of the model). Figure 7 shows a simple shallow
water model, where H denotes the average thickness of fluid, h(x, y, t) is the thickness at
a given position and time, η is the surface elevation anomaly at a given position, and B is
the bottom elevation of the model at a given position. One important assumption that we
will make is that the top surface of the fluid, given by z = H + η, has time dependence,
while the bottom surface z = B has spatial dependence, but it is fixed in time. We define
the thickness of the water at a given time and position as

h(x, y, t) = (H + η)(x, y, t)−B(x, y). (38)

2.2 The Momentum Equation

Our first major assumption to make when analyzing the shallow water model is that the
flow is entirely horizontal. In other words, the vertical component of velocity V, given by w,
is always zero. As a result, any gradient or divergence in for the shallow water model only

takes partial derivatives with respect to x and y (i.e. ∇ =
(
∂
∂x ,

∂
∂y

)
for the shallow water

model). Thus, in the momentum equation (Eq. (31)), the terms DV
Dt and −2Ω×V will be

zero for the z-component, allowing us to simplify the z-component momentum equation to

∂p

∂z
= −ρg, (39)

17



z = H

z = 0

H + η

y

z

x

h(x, y, t)H

B

p0

W

Figure 7: The shallow water model. In this model, H is the mean thickness of the fluid,
h(x, y, t) is the thickness at a given point in space and time, W is the width of the model, p0

is the pressure of the fluid above the fluid in the model, B(x, y) is the height of the bottom
surface of the fluid, and (H + η)(x, y, t) is the height of the top surface of the fluid.

where we have also eliminated the F term because there are no vertical external forces in
the model. Equation (39) is known as the hydrostatic equation, and integrating it over z,
we obtain

p(x, y, z, t) = −ρgz + C, (40)

where C is a constant of integration. At the surface of the fluid shown in Fig. 7, we assume
a constant pressure p0 that is equal to the pressure above the fluid, so that

p(x, y,H + η, t) = p0. (41)

Therefore, we can write Eq. (40) as

p(x, y, z, t) = ρg(H + η − z) + p0. (42)

Eq. (42) tells us that at the top of the shallow water model (z = H + η), the pressure is
simply p0 (as we should expect), and that as we decrease height within a column of the
model, the pressure is equal to the pressure at that height in the fluid plus the pressure of
the medium above the fluid in the model. From Eq. (42) we can also recognize that the
partial derivatives of p in the horizontal are independent of height z. This allows us to write

∂p

∂x
= ρg

∂(H + η)

∂x
, (43a)

∂p

∂y
= ρg

∂(H + η)

∂y
, (43b)

which implies
1

ρ
∇p = g∇(H + η). (44)
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Now substituting into the momentum equation given by Eq. (36), we obtain the momentum
equation for the shallow water model in a rotating reference frame, given by

DV

Dt
+ f ẑ×V = −g∇(H + η) + F. ∗ (45)

In component form, the momentum equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g∂(H + η)

∂x
+ fx, (46a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g∂(H + η)

∂y
+ fy, (46b)

∂p

∂z
= −ρg. (46c)

Note that Eq. (46c) is the differential form of the z-component of the momentum equation
for the shallow water, but as we have seen, we can solve this equation to obtain

p(x, y, z, t) = ρg(H + η − z) + p0. (42)

We should now discuss Eqs. 46a and 46b more carefully and explain the assumptions we
have made in deriving these equations in component form. When applying the material
derivative to u and v in Eq. (45), we made note to exclude w; we do this since w is
negligible in the shallow water model. We obtained the Coriolis term in Eqs. 46a and 46b
by taking the cross product of f ẑ and u and v, respectively. And the forces per unit mass
fx and fy are simply the x and y components of F, respectively, not to be confused with
the Coriolis parameter, given by f .

2.3 The Continuity Equation and Boundary Conditions

As we have seen, the continuity equation in the rotating reference frame is

∇ ·V = 0. (4)

If we rewrite Eq. (4) in component form and move the x and y derivatives to the right side
of the equation, we obtain

∂w

∂z
= −

(
∂u

∂x
+
∂v

∂y

)
. (47)

In the shallow water model, w � u, v, allowing us to interpret the right side of Eq. (47) as
−∇ ·V, so that we can rewrite the equation as

∂w

∂z
= −∇ ·V. (48)

∗Note that we have excluded the gravitational potential term ∇g because the term is a function of height
z, and z is assumed to be small in the shallow water model. (See Eqs. (29) and (30) for the term ∇g).
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Now integrating the right side of Eq. (48) with respect to z, we have∫ H+η

B
−∇ ·Vdz = −(H + η −B)∇ ·V = −h∇ ·V,

allowing us to write
w(H + η)− w(B) = −h∇ ·V. (49)

We now must apply the boundary conditions to the shallow water model. Following the
no-slip boundary condition at the bottom surface of the shallow water model (see [5] for
more detail on the no-slip condition), we need there to be no normal flow at the surface
z = B. Consequently,

w(x, y,B, t) =
DB

Dt
=
∂B

∂t
+ V · ∇B. (50)

Equation (50) implies that as the fluid flows at the bottom surface of the shallow water
model, its vertical flow w only depends on the shape of the terrain there because we only
see partial derivatives of the height B, not the flow, given by V. For the top of the model,
we have

w(x, y,H + η, t) =
D(H + η)

Dt
=
∂(H + η)

∂t
+ V · ∇(H + η) (51)

Again, the vertical flow at the top surface is only dependent on the shape of the surface.
Substituting our results from Eq. (50) and Eq. (51) into Eq. (49), we obtain

w(H + η)− w(B) =
∂(H + η)

∂t
+ V · ∇(H + η)−

(
∂B

∂t
+ V · ∇B

)
= −h∇ ·V. (52)

Simplifying Eq. (52) by applying our definition of the thickness h in the model, given by
Eq. (38), we arrive at

∂h

∂t
+ V · ∇h = −h∇ ·V, (53)

which we can rewrite as
Dh

Dt
+ h∇ ·V = 0, (54)

which is the continuity equation for the shallow water model, where we made use of the
material derivative and gradient operator. Note that we included the time derivative of
B, given by ∂B

∂t , throughout this derivation. However, given the constraints of the shallow

water model described in § 2.1, B is fixed in time, meaning that ∂B
∂t = 0. From Eq. (52),

we can then see that
∂(H + η)

∂t
− ∂B

∂t
=
∂(H + η)

∂t
=
∂h

∂t
, (55)

implying that the time derivative of the thickness of the model, given by ∂h
∂t , solely depends

on the height of the top surface of the model, given by H + η.
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2.4 Discussion

The system of partial differential equations governing the shallow water model is given by

h(x, y, t) = (H + η)(x, y, t)−B(x, y),

DV

Dt
+ f ẑ×V = −g∇(H + η) + F,

Dh

Dt
+ h∇ ·V = 0.

(38)

(45)

(54)

We can call Eqs. 38, 45, and 54 the shallow water equations, which are a closed partial
differential equation system for V, h, and η [8]. We shall again note that due to the small
nature of the vertical velocity w (so that V ≈ (u, v, 0)) in the shallow water model, the
material derivative and gradient operators for this model only contain x and y dependence,
meaning

D

Dt
=

∂

∂t
+ V · ∇ =

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
(57)

is the material derivative for the shallow water model.
We can now examine the shallow water equations more carefully and see how they

compare to the rotating Navier-Stokes equations. Comparing the shallow water continuity
equation (Eq. (54)) to the incompressible continuity equation given by Eq. (4), we see that
Eq. (54) includes a material derivative of the thickness h, which was nonexistent in Eq.
(4). In Eq. 54 we have a local derivative ∂h

∂t which describes how the thickness of the model
changes over time, and we have a convective derivative V · ∇h which describes changes
in the thickness of the model due to changes in position in the horizontal. Equation 54
describes how the mass in the model is conserved in spite of changes in thickness h. Note
that the total mass in a given width W may not always be constant, due to possible flow
into the model from outside W or flow out of the model, which would result in a changing
thickness h. However, the physical principle that mass cannot be created or destroyed still
holds here.

Our momentum equation, given by Eq. (45), is slightly simpler than the momentum
equation in a rotating reference frame (Eq. (36)) because we now only need to solve for
a velocity vector field in two directions, the x and y directions. Additionally, the pressure
gradient term, given by 1

ρ∇p in the rotating frame momentum equation, is quite different
in the shallow water momentum equation. In the shallow water model, it is −g∇(H + η).
The reason that we see this change is because the pressure in the shallow water model is
dependent on the pressure above the model.∗ For instance, if we assume the fluid in the
model is the ocean and the fluid above is the atmosphere, the pressure at given x and y
positions will be dependent on the atmospheric pressure. Because w is small in the shallow
water model, we do not need to solve for it in the velocity vector field. As a result, the
z-component of the shallow water momentum equations is simply the hydrostatic equation,
which describes how the pressure in the vertical changes with height. The Coriolis term
f ẑ×V remains unchanged when we compare the shallow water momentum equation to the

∗Recall that the top of the model is at a height z = H + η.
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momentum equation in a rotating reference frame. This invariance makes sense, since the
Coriolis acceleration depends on the flow of the fluid relative to the angular velocity, so we
should not see any changes under the constraints of the shallow water model.

The shallow water model is an extremely simplified picture of the ocean or the atmo-
sphere, and it serves as the basis for atmospheric and oceanic modeling. While the oceans
and atmosphere may be treated as a thin incompressible fluid when we seek to gain a superfi-
cial understanding of the flow, we must apply extensions to the model when truly looking to
understand or forecast geophysical processes. To do this, we could stack shallow water mod-
els on top of each other to generate a layered model, we could account for pressure variations
within the ocean and atmosphere, and we could consider shear stresses. The possibilities
for extending the shallow water model are endless, but the simplified, incompressible single
layer shallow water model develops the foundation for modeling geophysical flows. In the
next section, we will model geophysical flows by conducting numerical simulations of the
shallow water model.
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3 Simulations of the Shallow Water Model

This is the point where we see the payoff of our work in § 1 and 2. We began by deriving
the momentum and continuity governing equations of fluid dynamics in a rotating reference
frame. We then applied that derivation to a simple geophysical model — the shallow water
model. Now, we will conduct numerical simulations of the shallow water model, using
open source Python code provided by Jostein Brændshøi, a researcher at the Norwegian
Meteorological Institute [9]. By conducting simulations of this nature, we will gain insight
into how we model weather, climate, and the oceans, and we will verify our interpretations
of the analytical approach to fluid dynamics, which we took in § 1 and 2.

3.1 The Momentum Equation Numerical Method

The source code that we will use makes some important adjustments to the shallow water
equations. Specifically, the momentum equations take a linearized form, which allows us
to drop the convective term from the momentum equation, eliminating all spatial partial
derivatives from Eqs. 46a and 46b. This implies that we will look at a shallow water
simulation that assumes Stokes Flow, meaning that the Reynold’s number, a measure of
viscosity, is small (Re� 1).∗ Real world examples of Stoke’s flow include the movement of
microorganisms or the flow of lava. Additionally, we will assume no external forces, allowing
us to remove fx and fy from the momentum equations. The code assumes a flat bottom,
so that referencing Fig. 7, z = B = 0, allowing us to say h = H + η at all times. Lastly,
in this simulation, we will solve for the deviation from the mean height H of the model,
meaning we solve for for η, rather than H + η. Our resulting momentum equations are

∂u

∂t
− fv = −g∂(η)

∂x
, (58a)

∂v

∂t
+ fu = −g∂(η)

∂y
. (58b)

To solve these equations numerically, the code uses a forward-in-time, forward-in-space
finite difference method.† Specifically, if we want to determine the x-component of velocity,
given by u, at a future time n+ 1 when we know u at a time n, our difference equation (not
including the Coriolis acceleration) will be given by

un+1
m − unm

∆t
= −g

(
ηnm+1 − ηnm

∆x

)
, (59)

where ∆t represents the time step that we use and ∆x is the spatial step. Note that in
this notation, the superscripts reference a given time, while the subscripts represent a given
position in the mesh along the x-domain. Additionally, the x velocity u still has spatial and
time dependence, so that

un+1
m = u(xm, tn). (60)

∗In the real world, the atmosphere and oceans do not exhibit Stokes flow.
†For a complete discussion of numerical methods and discretization, refer to John D. Anderson’s Com-

putational Fluid Dynamics [5].
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Figure 8: Discretization mesh to solve for a system at a future time, using a forward-in-time,
forward-in-space discretization technique. The magenta points denote a known state of the
system at t2, while the cyan point denotes the location on the grid at which we calculate
the state of the system using a finite difference method.

Manipulating Eq. (59), we obtain an explicit solution for the x-component of velocity at a
future time n+ 1, given by

un+1
m = unm − g∆t

(
ηnm+1 − ηnm

∆x

)
. (61)

Note that in Eq. (59) we know all terms on the right side at a time n, so the equation
is explicit, and we can solve for u at a time n + 1 by plugging in values computed at the
previous time step. Figure 8 shows how we can implement the technique used in Eq. (61)
to solve for un+1. The magenta points at (x3, t2) and (x2, t2) correspond with the known
state of the system at t = t2. Referencing Eq. (61), the grid point (x3, t2) corresponds with
position m + 1 and time n, and (x2, t2) corresponds with position m and time n. We can
plug this known state of the system into the right side of (61), which will give the state of
the system at grid point (x2, t3), or the cyan point in Fig. 8, corresponding with position m
and time n+ 1. Note that the grid points displayed in Fig. 8 are not unique, and we could
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have created this figure for any three points in our mesh, provided that they are at the
points (xm+1, tn), (xm+1, tn), and (xm, tn+1). We can apply a similar technique and logic
to the y-component of the momentum equation (Eq. (62)), giving an explicit equation of

vn+1
m = vnm − g∆t

(
ηnm+1 − ηnm

∆y

)
. (62)

The code to compute un+1
m and vn+1

m using Eqs. (61) and (62) is

1 # Compute u and v at next time step

2 u_np1[:-1, :] = u_n[:-1, :] - g*dt/dx*( eta_n[1:, :] - eta_n[:-1, :])

3 v_np1[:, :-1] = v_n[:, :-1] - g*dt/dy*( eta_n[:, 1:] - eta_n[:, :-1])

It is important to note that this code does not contain the crucial Coriolis parameter, which
we obtained through our derivation in § 1 and 2. Rather, the arrays that store u and v in
the above code are predictors of u and v, and we then compute corrected values afterward to
include the Coriolis parameter. The code shown below implements this corrector method.

1 # Use a corrector method to add coriolis

2 u_np1[:, :] = (u_np1[:, :] - beta_c*u_n[:, :] + alpha*v_n[:, :])/(1 + beta_c

)

3 v_np1[:, :] = (v_np1[:, :] - beta_c*v_n[:, :] - alpha*u_n[:, :])/(1 + beta_c

)

Essentially, after we determine u and v at a future time step, the code uses parameters
beta c and alpha, which depend on the Coriolis parameter f , in order to correct for the
Coriolis effect, modifying the calculated u and v at the future time step. The necessity for
implementing this corrector method comes from the nature of the momentum differential
equations we seek to solve, given by

∂u

∂t
− fv = −g∂(η)

∂x
, (58a)

∂v

∂t
+ fu = −g∂(η)

∂y
. (58b)

Examining these equations carefully, we see that the x-component equation contains v and
the y-component equation contains u. Consequently, the discretization of these equations
requires us to incorporate vn+1 and un+1 into the x and y-component equations, respectively.
To do so, it is necessary to have already calculated vn+1 and un+1; thus, we use the corrector
method for the Coriolis parameter in our discretization.

3.2 The Continuity Equation Numerical Method

The code that we will use solves the continuity equation in its nonlinear form, using forward
differences for the time derivatives and an upwind scheme for the spatial components.
Additionally, the differential equation that the code solves is slightly different from the
one given in Eq. (54) because it solves for η, the deviation from the mean height H, rather
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than solving for h. However, in this form of the continuity equation, the conservation of
mass principle still holds, but we apply it in a different manner. The equation is given by

∂η

∂t
+ (H + η)

∂u

∂x
+ u

∂η

∂x
+ (H + η)

∂v

∂y
+ v

∂η

∂y
= 0, (64)

which we can also write as

∂η

∂t
+
∂((H + η)u)

∂x
+
∂((H + η)v)

∂y
= 0, (65)

where we worked backwards from Eq. 64 using the product rule.
To solve Eq. (65) numerically, the code implements an upwind scheme, which models

the movement of the flow over time in one direction [5]. Despite having first-order accuracy,
an upwind scheme is useful because it only takes finite differences against the direction of
the flow, making it less computationally expensive than other descretization methods. In
an upwind scheme, we test if the flow in the x and y-direction is positive or negative, and
we model the movement of the flow accordingly. In a real-world GFD application, if the
wind is moving from the west and we want to know what the wind will be at a future
time, an upwind scheme would only look to the west to model the wind. Figure 9 displays
an implementation of the upwind scheme. Since the flow is in the positive x-direction, an
upwind difference equation would only consider points upstream, which are denoted in blue
in the figure.

x
xmxm−1 xm+1

u

Figure 9: Implementation of an upwind scheme. In this case, u is in the positive x-direction,
and we want to solve for u at a point xm at a future time. To do so, we implement a upwind
scheme, considering only where the flow comes from, and disregarding information at xm+1.
The blue points indicate points used in the finite difference in the upwind scheme. If the
flow were in the negative x-direction, xm and xm+1 would be blue.

Applied to the x-direction in the shallow water model, when the flow is positive (u > 0),
the difference to determine u at a given grid point m is

un,+m =
un+1,+
m+1 (hn,+m )− un+1,+

m (hn,+m−1)

∆x
, (66)

where the superscripts + denote that we are examining the case where the flow is in the
positive x-direction. Recall that in this analysis of the shallow water model, B = 0 so
h = H + η, allowing us to use h in Eq. (66). We use our results for un+1 which we
calculated in § 3.1, allowing us to find finite differences for un. If u < 0, we have

un,−m =
un+1,−
m+1 (hn,−m+1)− un+1,−

m (hn,−m )

∆x
, (67)
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signifying that the flow is moving in the minus x-direction. For the y-direction, vn+1,+
m and

vn+1,−
m will appear the same as Eqs. (66) and (67), respectively, except we replace u with
v and ∆x with ∆y. When we put the results together, the difference equation, given by

ηn+1
m = ηnm −∆t

(
unm
∆x

+
vnm
∆y

)
, (68)

has u and v terms depend on if the flow is positive or negative. Equation (68) numerically
solves Eq. (65) using a forward in time, upward wind scheme numerical method. The code
to implement this explicit solution is

1 # --- Computing arrays needed for the upwind scheme in the eta equation

.----

2 h_e[:-1, :] = np.where(u_np1[:-1, :] > 0, eta_n[:-1, :] + H, eta_n[1:,

:] + H) # IF true , m-1, m + 1

3 h_e[-1, :] = eta_n[-1, :] + H

4

5 h_w[0, :] = eta_n[0, :] + H

6 h_w[1:, :] = np.where(u_np1[:-1, :] > 0, eta_n[:-1, :] + H, eta_n[1:, :]

+ H)

7

8 h_n[:, :-1] = np.where(v_np1[:, :-1] > 0, eta_n[:, :-1] + H, eta_n[:,

1:] + H) # depend on sign of v

9 h_n[:, -1] = eta_n[:, -1] + H

10

11 h_s[:, 0] = eta_n[:, 0] + H

12 h_s[:, 1:] = np.where(v_np1[:, :-1] > 0, eta_n[:, :-1] + H, eta_n[:, 1:]

+ H)

13

14 uhwe[0, :] = u_np1[0, :]* h_e[0, :] # u * h

15 uhwe[1:, :] = u_np1 [1:, :]* h_e[1:, :] - u_np1[:-1, :]* h_w[1:, :] #

Difference

16 # m + 1 upwind h, m, m+1 #m # m, m-1

17 vhns[:, 0] = v_np1[:, 0]* h_n[:, 0]

18 vhns[:, 1:] = v_np1[:, 1:]* h_n[:, 1:] - v_np1[:, :-1]*h_s[:, 1:]

19 # ------------------------- Upwind computations done

-------------------------

20

21 # ----------------- Computing eta values at next time step

-------------------

22 eta_np1[:, :] = eta_n[:, :] - dt*(uhwe[:, :]/dx + vhns[:, :]/dy) #

Without source/sink

In the above code, line 15 generates unm given in Eq. (66) or (67), depending on if the flow
is in the positive or negative x-direction, and line 18 does the same for vnm. Line 22 puts
everything together, solving Eq. (65). We are now ready to conduct simulations using this
model.
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3.3 Setup of the Model

Parameter Value

x−direction Width Wx 1, 000 km
y−direction Width Wy 1, 000 km
Grid Area 1, 000, 000 km2∗

Acceleration due to Gravity g 9.81 m/s2

Mean Fluid Depth H 100 m
Coriolis Parameter f 1.208× 10−4 s−1

Number of grid points in x-direction Nx 150
Number of grid points in y-direction Ny 150
∆x Wx/(Nx-1)
∆y Wy/(Ny-1)

∆t 0.1/
√

(gH)
Number of time steps in simulation 3000

Table 3: Parameters for the numerical simulation.

Like most numerical methods for solving partial differential equations, we will utilize
a grid with fixed widths, where h, u, and v can vary with time. Table 3 shows several
parameters that we use for this model. To initialize the height deviation from H, given by
η, we can define a mesh of values for η that has some randomness at each grid point. The
code to do this is

1 # Initial condition for eta.

2 eta_n[:, :] = np.sin(4*np.pi*X/L_y) + np.sin(4*np.pi*Y/L_y)

which generates an initialized height deviation η, as shown in Fig. 10. Notice that we
intentionally assign some locations to have surface elevation anomalies η > 0, while other
locations have surface anomalies η < 0. This initialization is not realistic for atmospheric or
oceanic phenomenon, but it will be interesting to analyze when we conduct our simulations,
since the continuity equation (Eq. (65)) shows that the velocity vector field is highly
dependent on the surface elevation η.

Because the initialized η varies throughout the mesh, we can initialize u and v at 0 m/s,
so that the initial movement occurs entirely due to the continuity equation (Eq. (65)). This
movement will cause u and v to change, and cause the velocity vector field to change at
each time step. By choosing a time step ∆t of 0.1/

√
(gH), the simulation that we will run

is stable under the Courant-Friedrichs-Lewy stability condition, given by

∆t ≤ ∆x√
(gH)

(69)

∗For reference, the total area of the Mediterranean Sea is approximately 2,510,000 km2, so our domain
is about half the size of the Mediterranean Sea.
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Figure 10: Initialization of the surface elevation η in the shallow water model for our
simulations. Red colors denote a surface height above the mean height H, and blue colors
denote a surface below H.

for the x-direction [10]. The same condition holds in the y-direction, except we replace ∆x
with ∆y.

3.4 Simulation

We are now ready to complete our simulation of the shallow water model. As previously
discussed, we will use the initialization shown in Fig. 10 and an initial velocity vector field
of V = ~0.

3.4.1 The Goal of The Simulation

In our simulations of the shallow water model, we will examine the impact of the Coriolis
acceleration at different latitudes. By choosing a fixed Coriolis parameter for different
simulations of the shallow water model and visualizing the velocity vector field V for the
different simulations, we will be able to qualitatively describe the impact of the Coriolis
acceleration on the flow. With 3, 000 total time steps in our simulation, we will numerically
simulate 17.86 hours of the shallow water model. We will look at snapshots of the velocity
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vector field at time steps 1,000 and 2,000, which correspond with hours 5.95 and 11.9 of
the simulation, respectively. Table 4 displays the latitudes and Coriolis parameters for each
simulation of the shallow water model that we will run. Because the Coriolis acceleration is
given by f ẑ×V, we should expect to see the largest diversions in the velocity vector field
due to the Coriolis acceleration at the highest latitudes, which are in simulations 3 and 4.

Simulation Latitude ϕ (◦) Coriolis parameter f (10−4 s−1)

1 0 0
2 30 0.727
3 60 1.26
4 90 1.454

Table 4: Latitudes and Coriolis parameters for each simulation.

3.4.2 The Results

As mentioned in § 2, this analysis is strictly qualitative, and we will examine how the velocity
vector field at a given time within the simulations changed as we changed the latitude of the
simulation (along with the Coriolis parameter). Figures 11 and 12 display the velocity vector
field V at 5.95 and 11.9 hours into the simulation, respectively. Examining the figures, we
can see that at all latitudes, there appear to be “sources” and “sinks”, or locations from
which the flow travels to or leaves, respectively. Since we assumed that the density of the
fluid is constant for this model, there is no pressure gradient responsible for these sources
and sinks. Rather, the conservation of mass principle (Eq. (65)) causes these sources and
sinks in the velocity vector field. Because our initialization of the mean height deviation η
(shown in Fig. 10) had peaks and valleys, the flow – which was entirely due to changes in η
– takes on a “wavy” trajectory, with the flow approaching a specific location at times and
leaving at other times.

While the source and sink pattern unites the simulations at different latitudes, we can
see a clear distinction in the trajectory of the flow as we alter the latitude. As hypothesized,
when we increase the latitude at which we conducted the simulation, the curvature in V
increases, as shown in Figs. 11 and 12. We can attribute this finding entirely to the Coriolis
effect, which was the only parameter that we modified in the simulations. For example, Fig.
12a, which shows V at the equator, has a very vertically and horizontally oriented vector
field, with no true curvature in the flow. However, when we examine Figs. 12c and 12d,
which increase the latitude to ϕ = 60◦ and ϕ = 90◦, respectively, we notice that the vector
field diverts significantly from this vertically oriented structure. Moreover, this “diversion”
is to the right, which we should expect given that the Coriolis parameter is positive, meaning
that the rotation is counterclockwise. Thus, the velocity vector fields verify our analytical
interpretation of the Coriolis effect from § 1.4.2.

30



Figure 11: The velocity field at 5.95 hours into the simulation for latitudes (a) ϕ = 0◦, (b)
ϕ = 30◦, (c) ϕ = 60◦, and (d) ϕ = 90◦.
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Figure 12: The velocity field at 11.9 hours into the simulation for latitudes (a) ϕ = 0◦, (b)
ϕ = 30◦, (c) ϕ = 60◦, and (d) ϕ = 90◦.
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3.5 Discussion

Our work in § 1 and 2 planted the seeds for conducting numerical simulations in § 3. When
we derived the NSEs in a rotating reference frame, we saw that a few new terms appeared.
The term of interest for geophysical purposes was −2Ω × V, the Coriolis acceleration.
Because this term was on the right side of the momentum equation and we want to solve
that equation for V, which is a partial derivative on the left side of the equation, we
concluded that the Coriolis acceleration would divert a flow to the right, and it would do so
to a greater extent at higher latitudes, where the magnitude of Ω is greater. Our results of
the simulations we conducted in this section numerically verify what we previously derived,
showing an enhanced curvature and diversion in V as the latitude increased.
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Conclusion

In fluid dynamics, there are three dimensions: the experimental dimension, the theoretical
dimension, and the computational dimension. In this paper, we bridged the gap between
two of these dimensions – the theoretical and the computational. We first noted a key
problem in the inertial reference frame Navier-Stokes equations. While they provide strong
detail and insight when analyzing flows on small spatial and time scales, when analyzing
flows on larger scales, like Earth’s oceans or the atmosphere, the inertial frame equations
do not suffice. We tackled this problem by noting that Earth is a rotating body, so we
derived the Navier-Stokes equations in a rotating reference frame. We uncovered new terms
in the equations, such as the Coriolis term, which describes the tendency of a moving body
to divert its trajectory. This term is crucial when considering tropical storm formation or
oceanic circulation, and it is non-existent in the inertial frame Navier-Stokes equations. We
applied our derivation to the shallow water model, obtaining the shallow water equations.
Lastly, we connected our theoretical study to a computational one, by conducting numerical
simulations of the shallow water model at different latitudes. In geophysical fluid dynamics,
it is nearly impossible to consider the experimental dimension of fluid dynamics; Earth’s
atmosphere and oceans are so large and operate on such a long time scale that taking
velocity and density measurements at all locations within these fluids is not practical.

This work is important because it serves as the basis for understanding the complex
and dynamic processes in Earth’s oceans and atmospheres. Why does a tropical storm spin
counterclockwise in the northern hemisphere and clockwise in the southern hemisphere but
is unable to form at the equator? That is due to the Coriolis effect. Why is Earth’s net
acceleration due to gravity equal to g = 9.81 m/s2? That is in part due to gravitation,
but it is also due to the centrifugal acceleration. Both the Coriolis term and the centrifugal
term arise in the NSEs only when we consider the equations in a rotating reference frame.
Because we made this consideration, we can better understand the processes that underpin
large-scale flows on Earth.

To extend the work in this paper, we could analyze the velocity vector field generated in
our numerical simulations with a more quantitative approach. For instance, we could look
at velocity vectors at unique points in our mesh for each of our four simulations and devise
a mathematical formula to compare the differences in velocity vectors at given times. We
would then have a rigorous understanding of how the Coriolis acceleration impacts the flow.
To continue the work from § 2, we could develop a multi-layer shallow water water model, in
which the characteristics of each layer are different (e.g. differing densities). Generating the
equations to govern this model would paint a truer picture of the oceans and atmosphere,
as layers within the ocean and atmosphere have different densities. After generating the
equations for this multi-layer shallow model, we could again analyze them numerically to
see if trends that we saw with a single layer arise when we consider multiple layers. This
work is a foundation for diving deeper and exploring the fascinating nature of large-scale
fluids on Earth.
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